Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury

年龄会增加巨噬细胞中活性氧的产生,并增强脊髓损伤后的氧化损伤

阅读:5
作者:Bei Zhang, William M Bailey, Anna Leigh McVicar, John C Gensel

Abstract

Age potentiates neurodegeneration and impairs recovery from spinal cord injury (SCI). Previously, we observed that age alters the balance of destructive (M1) and protective (M2) macrophages; however, the age-related pathophysiology in SCI is poorly understood. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) contributes to reactive oxygen species (ROS)-mediated damage and macrophage activation in neurotrauma. Further, NOX and ROS increase with central nervous system age. Here, we found significantly higher ROS generation in 14 versus 4-month-old (MO) mice after contusion SCI. Notably, NOX2 increased in 14 MO ROS-producing macrophages suggesting that macrophages and NOX contribute to SCI oxidative stress. Indicators of lipid peroxidation, a downstream cytotoxic effect of ROS accumulation, were significantly higher in 14 versus 4 MO SCI mice. We also detected a higher percentage of ROS-producing M2 (Arginase-1-positive) macrophages in 14 versus 4 MO mice, a previously unreported SCI phenotype, and increased M1 (CD16/32-positive) macrophages with age. Thus, NOX and ROS are age-related mediators of SCI pathophysiology and normally protective M2 macrophages may potentiate secondary injury through ROS generation in the aged injured spinal cord.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。