Efficient removal of Cd (II) from contaminated water and soils using nanoparticles from nitrogen fertilizer industry waste

利用氮肥工业废料中的纳米颗粒有效去除污染水和土壤中的 Cd (II)

阅读:4
作者:Elsayed Elkhatib, Ahmed Mahdy, Ayman Mahmoud, Mohamed Moharem

Background

Cadmium (Cd) is used extencively in many industries and can cause environmenal pollution and severe damage to human health. As millions of tons of lime-based solid by-product from nitrogen fertilizer industry (NFIB) are produced each year, the main

Conclusions

The accessibility, low cost, and Cd sequestration efficiency of nNFIB nominate it to be an economic and a promised adsorbent for environmental remediation.

Methods

A novel nanoscale adsorbent was developed from the nitrogen fertilizer industry byproduct (NFIB) and was characterized using X-ray diffraction(XRD) and scanning electron microscope (SEM). Batch sorption equilibrium and kinetic experiments were conducted to evaluate the efficiency of nano- NFIB (nNFIB) in sequestering Cd(II) in contaminated soil and water.

Results

The results of adorption equilibrium and kinetics experiments revealed that Langmuir and power function models best described Cd adsorption on bulk NFIB and nNFIB as evidenced by high R2(determination coefficient) and low SE(standard error of estimates) values. The Langmuir maximum adsorption capacity (q푞max) of nNFIB for Cd(II) was 100 mg g-1 which is twenty times higher than that of Bulk NFIB. The distinguishing features of NIFB nanoparticles involve efficient removal of Cd(II) from contaminated water (>90%) and enhancement of Cd (II) immobilization (146%) in cotaminated soil.Fourier Transmission Infrared (FTIR) spectra of Cd(II) contaminated water and soil before and after nNFIB application revealed the important rule of calcite nanoparticles in Cd(II) sequestration. Conclusions: The accessibility, low cost, and Cd sequestration efficiency of nNFIB nominate it to be an economic and a promised adsorbent for environmental remediation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。