Conclusions
The results demonstrate for the first time the capacity of synovial fibroblasts to degrade intact cartilage matrix by disturbing the homeostasis of cartilage via the production of catabolic enzymes/pro-inflammatory cytokines and suppression of anabolic matrix synthesis (i.e., collagen type II). This new in vitro model may closely reflect the complex process of early stage in vivo destruction in RA and help to elucidate the role of synovial fibroblasts and other synovial cells in this process, and the molecular mechanisms involved in cartilage degradation.
Methods
A standardised model was established by co-culturing bovine cartilage discs with early-passage human synovial fibroblasts for 14 days under continuous stimulation with TNF-alpha, IL-1beta or a combination of TNF-alpha/IL-1beta. To assess cartilage destruction, the co-cultures were analysed by histology, immunohistochemistry, electron microscopy and laser scanning microscopy. In addition, content and/or neosynthesis of the matrix molecules cartilage oligomeric matrix protein (COMP) and collagen II was quantified. Finally, gene and protein expression of matrix-degrading enzymes and pro-inflammatory cytokines were profiled in both synovial fibroblasts and cartilage.
Results
Histological and immunohistological analyses revealed that non-stimulated synovial fibroblasts are capable of demasking/degrading cartilage matrix components (proteoglycans, COMP, collagen) and stimulated synovial fibroblasts clearly augment chondrocyte-mediated, cytokine-induced cartilage destruction. Cytokine stimulation led to an upregulation of tissue-degrading enzymes (aggrecanases I/II, matrix-metalloproteinase (MMP) 1, MMP-3) and pro-inflammatory cytokines (IL-6 and IL-8) in both cartilage and synovial fibroblasts. In general, the activity of tissue-degrading enzymes was consistently higher in co-cultures with synovial fibroblasts than in cartilage monocultures. In addition, stimulated synovial fibroblasts suppressed the synthesis of collagen type II mRNA in cartilage. Conclusions: The results demonstrate for the first time the capacity of synovial fibroblasts to degrade intact cartilage matrix by disturbing the homeostasis of cartilage via the production of catabolic enzymes/pro-inflammatory cytokines and suppression of anabolic matrix synthesis (i.e., collagen type II). This new in vitro model may closely reflect the complex process of early stage in vivo destruction in RA and help to elucidate the role of synovial fibroblasts and other synovial cells in this process, and the molecular mechanisms involved in cartilage degradation.
