Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway

泛素介导的蛋白酶体降解途径对Cidea蛋白稳定性的调节

阅读:5
作者:Siu Chiu Chan, Sheng-Cai Lin, Peng Li

Abstract

Cidea, one of three members of the CIDE (cell-death-inducing DNA-fragmentation-factor-45-like effector) family of proteins, is highly enriched in brown adipose tissue, in which it plays a critical role in adaptive thermogenesis and fat accumulation. Cidea-null mice have increased energy expenditure with resistance to high-fat-diet-induced obesity and diabetes. However, little is known as to how the Cidea protein is regulated. In the present study we show that Cidea is a short-lived protein as measured by cycloheximide-based protein chase experiments in different cell lines or in differentiated brown adipocytes. Proteasome inhibitors specifically increased the stability of both transfected and endogenous Cidea protein. Furthermore, Cidea protein was found to be polyubiquitinated when overexpressed in different culture cells as well as in differentiated mature brown adipocytes. Extensive mutational analysis of individual lysine residues revealed that ubiquitinated lysine residues are located in the N-terminal region of Cidea, as alteration of these lysine residues to alanine (N-5KA mutant) renders Cidea much more stable when compared with wild-type or C-terminal lysine-less mutant (C-5KA). Furthermore, K23 (Lys23) within the N-terminus of the Cidea was identified as the major contributor to its polyubiquitination signal and the protein instability. Taken together, the results of our study demonstrated that the ubiquitin-proteasome system confers an important post-translational modification that controls the protein stability of Cidea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。