Dynamic differentiation of F4/80+ tumor-associated macrophage and its role in tumor vascularization in a syngeneic mouse model of colorectal liver metastasis

F4/80+肿瘤相关巨噬细胞的动态分化及其在结直肠癌肝转移同基因小鼠模型中肿瘤血管化的作用

阅读:10
作者:Ting Qiao #, Wanli Yang #, Xiangchuan He #, Ping Song #, Xiao Chen, Ruijie Liu, Jian Xiao, Xiaoli Yang, Mingqi Li, Yudan Gao, Guoan Chen, Yi Lu, Jian Zhang, Jing Leng, Huan Ren4

Abstract

Tumor-associated macrophages (TAMs) are highly heterogeneous and play vital roles in tumor progression. Here we adopted a C57BL/6 mouse model imitating the late-stage colorectal liver metastasis (CRLM) by Mc38 colorectal cancer cell injection via the portal vein. With serial sections of CRLM biopsies, we defined 7-9 days post-injection as the critical period for tumor neovascularization, which was initiated from the innate liver vessels via vessel cooption and extended by vascular mimicry and thereof growth of CD34+cells. In samples with increasing-sized liver metastases, the infiltrated Ly6C+ CD11b+ F4/80- monocytes steadily gained the expression of F4/80, a Kupffer cell marker, before transformed into Ly6C- CD11bint F4/80+ cells, which, the same phenotype was also adapted by Ly6C- CD11b- F4/80+ Kupffer cells. F4/80+ TAMs showed proximity to neovascularization and tumor vessels, functionally angiogenic in vivo; and greatly promoted the activation of a few key angiogenic markers such as VEGFA, Ki67, etc. in endothelial cells in vitro. Depletion of macrophages or diversion of macrophage polarization during neovascularization impeded tumor growth and vascularization and resulted in greatly reduced F4/80+ TAMs, yet increased CD11b+ cells due to inhibition of TAM differentiation. In summary, our results showed dynamic and spatial-temporal F4/80+ TAM transformation within the tumor microenvironment and strengthened its role as perivascular and angiogenic TAMs in CRLM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。