Heat shock factor HSFA2 fine-tunes resetting of thermomemory via plastidic metalloprotease FtsH6

热休克因子 HSFA2 通过质体金属蛋白酶 FtsH6 微调热记忆的重置

阅读:10
作者:Mastoureh Sedaghatmehr, Benno Stüwe, Bernd Mueller-Roeber, Salma Balazadeh

Abstract

Plants 'memorize' stressful events and protect themselves from future, often more severe, stresses. To maximize growth after stress, plants 'reset' or 'forget' memories of stressful situations, which requires an intricate balance between stress memory formation and the degree of forgetfulness. HEAT SHOCK PROTEIN 21 (HSP21) encodes a small heat shock protein in plastids of Arabidopsis thaliana. HSP21 functions as a key component of thermomemory, which requires a sustained elevated level of HSP21 during recovery from heat stress. A heat-induced metalloprotease, filamentation temperature-sensitive H6 (FtsH6), degrades HSP21 to its pre-stress abundance, thereby resetting memory during the recovery phase. The transcription factor heat shock factor A2 (HSFA2) activates downstream genes essential for mounting thermomemory, acting as a positive regulator in the process. Here, using a yeast one-hybrid screen, we identify HSFA2 as an upstream transactivator of the resetting element FtsH6. Constitutive and inducible overexpression of HSFA2 increases expression of FtsH6, whereas it is drastically reduced in the hsfa2 knockout mutant. Chromatin immunoprecipitation reveals in planta binding of HSFA2 to the FtsH6 promoter. Importantly, overexpression of HSFA2 improves thermomemory more profoundly in ftsh6 than wild-type plants. Thus, by activating both memory-supporting and memory-resetting genes, HSFA2 acts as a cellular homeostasis factor during thermomemory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。