Curcumin suppresses metastasis, invasion, and proliferation in osteosarcoma cells by regulating the EGFR/Src signaling axis

姜黄素通过调节 EGFR/Src 信号轴抑制骨肉瘤细胞的转移、侵袭和增殖

阅读:8
作者:Huiying Liu, Zhiqiang Li, Binwu Xu, Zhipeng Li, Xili Yang, Jun Luo

Abstract

We explored the biological mechanisms by which curcumin (Cur) confronts osteosarcoma (OS) tumorigenesis and potential drug gene targets based on network pharmacology and in vitro cell experiments. Cur has been recognized for its significant role in combating various types of tumors. However, the intrinsic molecular mechanisms through which it affects OS remain uncharted. In this study, we performed network pharmacology methods including protein-protein interaction (PPI) and core target screening, Functional Enrichment Analysis and Network Construction, Molecular Docking, which obtained the potential target of Cur. Meanwhile, cell experiments (wound healing assay, Transwell assay, Western blots, immunofluorescence, et al.) in vitro were performed to verify the targets, and reveal the biological mechanisms. A total of 18 hub genes were identified through our network pharmacological analysis. In vitro studies show that Cur inhibits the proliferation, migration, invasion capabilities of MG63 and U2OS cells. Western blot reveals a down-regulation of p-PI3K, PI3K, p-Akt, Akt, EGFR, Src, p-Src (Tyr416) and STAT3 expression when treated with Cur. Additionally, Cur upregulated epithelial proteins (E-cadherin and Occludin) while decreasing the expression of the mesenchymal protein (N-cadherin). In addition, Cur treatment decreases the EGFR/Src signaling pathway in the presence of active Src overexpression. Cur inhibits the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) by down-regulating EGFR/Src signaling axis, also resulting in coordinated weakening of its downstream regulatory genes, including Akt, STAT3, Bcl2, ERK1/2, among others signal axis (PI3K/Akt signaling pathway).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。