Directional surface plasmon-coupled emission: application for an immunoassay in whole blood

定向表面等离子体耦合发射:用于全血免疫测定

阅读:9
作者:Evgenia G Matveeva, Zygmunt Gryczynski, Joanna Malicka, Joanna Lukomska, Slawomir Makowiec, Klaus W Berndt, Joseph R Lakowicz, Ignacy Gryczynski

Abstract

We present a new approach for performing fluorescence immunoassay in whole blood using fluorescently labeled anti-rabbit immunoglobulin G (IgG) on a silver surface. This approach, which is based on surface plasmon-coupled emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bioaffinity surface. This article describes the effect of an optically dense sample matrix, namely human whole blood and serum, on the intensity of the SPCE. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal was studied. It was demonstrated that the kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately two- and threefold, respectively, as compared with buffer, resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Excited fluorophores outside the 200-nm layer do not contribute to SPCE, and their free space emission is not transmitted through the opaque metallic film into the glass substrate. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood with no need for washing steps.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。