Biophysical Characterization of a Novel Phosphopentomutase from the Hyperthermophilic Archaeon Thermococcus kodakarensis

超嗜热古菌 Thermococcus kodakarensis 中新型磷酸戊糖变位酶的生物物理特性

阅读:5
作者:Zahra Naz, Jacek Lubkowski, Muhammad Saleem, Mehwish Aslam, Moazur Rahman, Alexander Wlodawer, Naeem Rashid

Abstract

Phosphopentomutases catalyze the isomerization of ribose 1-phosphate and ribose 5-phosphate. Thermococcus kodakarensis, a hyperthermophilic archaeon, harbors a novel enzyme (PPMTk) that exhibits high homology with phosphohexomutases but has no significant phosphohexomutase activity. Instead, PPMTk catalyzes the interconversion of ribose 1-phosphate and ribose 5-phosphate. Here, we report biophysical analysis, crystallization, and three-dimensional structure determination of PPMTk by X-ray diffraction at 2.39 Å resolution. The solved structure revealed a novel catalytic motif, unique to PPMTk, which makes this enzyme distinct from the homologous counterparts. We postulate that this novel catalytic motif may enable PPMTk to isomerize phosphopentose instead of phosphohexose. To the best of our knowledge, this is the first biophysical and structural analysis of a phosphopentomutase from hyperthermophilic archaea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。