Essential Amino Acid Starvation-Induced Oxidative Stress Causes DNA Damage and Apoptosis in Murine Osteoblast-like Cells

必需氨基酸饥饿诱导的氧化应激导致小鼠成骨样细胞 DNA 损伤和凋亡

阅读:13
作者:Runbo Li, Hirohito Kato, Chihiro Fumimoto, Yurika Nakamura, Kimihiro Yoshimura, Emika Minagawa, Keiju Omatsu, Chizuko Ogata, Yoichiro Taguchi, Makoto Umeda

Abstract

Intracellular nutrient metabolism, particularly the metabolism of essential amino acids (EAAs), is crucial for cellular functions, including energy production and redox homeostasis. An EAA deficiency can lead to cellular dysfunction and oxidative stress. This study explores the mechanisms underlying cellular responses to EAA starvation, focusing on ROS-induced DNA damage and apoptosis. MC3T3-E1 cells were subjected to EAA starvation, and various assays were conducted to assess cell proliferation, survival, DNA damage, and apoptosis. The antioxidant N-acetylcysteine (NAC) was employed to block ROS formation and mitigate cellular damage. Gene expression and Western blot analyses were performed to elucidate molecular pathways. EAA starvation-induced ROS generation, DNA damage, and apoptosis in MC3T3-E1 cells. NAC administration effectively reduced DNA damage and apoptosis, highlighting the pivotal role of ROS in mediating these cellular responses during EAA deficiency. This study demonstrates that EAA starvation triggers ROS-mediated DNA damage and apoptosis, offering insights into the intricate interplay between nutrient deficiency, oxidative stress, and programmed cell death. NAC emerges as a potential therapeutic intervention to counteract these adverse effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。