The Protein Interaction of RNA Helicase B (RhlB) and Polynucleotide Phosphorylase (PNPase) Contributes to the Homeostatic Control of Cysteine in Escherichia coli

RNA 解旋酶 B (RhlB) 与多核苷酸磷酸化酶 (PNPase) 的蛋白质相互作用有助于大肠杆菌中半胱氨酸的稳态控制

阅读:9
作者:Yi-Ting Tseng, Ni-Ting Chiou, Rajinikanth Gogiraju, Sue Lin-Chao

Abstract

PNPase, one of the major enzymes with 3' to 5' single-stranded RNA degradation and processing activities, can interact with the RNA helicase RhlB independently of RNA degradosome formation in Escherichia coli. Here, we report that loss of interaction between RhlB and PNPase impacts cysteine homeostasis in E. coli. By random mutagenesis, we identified a mutant RhlB(P238L) that loses 75% of its ability to interact with PNPase but retains normal interaction with RNase E and RNA, in addition to exhibiting normal helicase activity. Applying microarray analyses to an E. coli strain with impaired RNA degradosome formation, we investigated the biological consequences of a weakened interaction between RhlB and PNPase. We found significant increases in 11 of 14 genes involved in cysteine biosynthesis. Subsequent Northern blot analyses showed that the up-regulated transcripts were the result of stabilization of the cysB transcript encoding a transcriptional activator for the cys operons. Furthermore, Northern blots of PNPase or RhlB mutants showed that RhlB-PNPase plays both a catalytic and structural role in regulating cysB degradation. Cells expressing the RhlB(P238L) mutant exhibited an increase in intracellular cysteine and an enhanced anti-oxidative response. Collectively, this study suggests a mechanism by which bacteria use the PNPase-RhlB exosome-like complex to combat oxidative stress by modulating cysB mRNA degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。