Consequences of producing DNA gyrase from a synthetic gyrBA operon in Salmonella enterica serovar Typhimurium

鼠伤寒沙门氏菌中合成 gyrBA 操纵子产生 DNA 旋转酶的后果

阅读:13
作者:German Pozdeev, Aalap Mogre, Charles J Dorman

Abstract

DNA gyrase is an essential type II topoisomerase that is composed of two subunits, GyrA and GyrB, and has an A2 B2 structure. Although the A and B subunits are required in equal proportions to form DNA gyrase, the gyrA and gyrB genes that encode them in Salmonella (and in many other bacteria) are at separate locations on the chromosome, are under separate transcriptional control, and are present in different copy numbers in rapidly growing bacteria. In wild-type Salmonella, gyrA is near the chromosome's replication terminus, while gyrB is near the origin. We generated a synthetic gyrBA operon at the oriC-proximal location of gyrB to test the significance of the gyrase gene position for Salmonella physiology. Although the strain producing gyrase from an operon had a modest alteration to its DNA supercoiling set points, most housekeeping functions were unaffected. However, its SPI-2 virulence genes were expressed at a reduced level and its survival was reduced in macrophage. Our data reveal that the horizontally acquired SPI-2 genes have a greater sensitivity to disturbance of DNA topology than the core genome and we discuss its significance in the context of Salmonella genome evolution and the gyrA and gyrB gene arrangements found in other bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。