Poly(vinyl alcohol) Molecular Bottlebrushes Nucleate Ice

聚乙烯醇分子瓶刷核冰

阅读:6
作者:Panagiotis G Georgiou, Nina L H Kinney, Ioanna Kontopoulou, Alexander N Baker, Steven A Hindmarsh, Akalabya Bissoyi, Thomas R Congdon, Thomas F Whale, Matthew I Gibson

Abstract

Ice binding proteins (IBP) have evolved to limit the growth of ice but also to promote ice formation by ice-nucleating proteins (INPs). IBPs, which modulate these seemingly distinct processes, often have high sequence similarities, and molecular size/assembly is hypothesized to be a crucial determinant. There are only a few synthetic materials that reproduce INP function, and rational design of ice nucleators has not been achieved due to outstanding questions about the mechanisms of ice binding. Poly(vinyl alcohol) (PVA) is a water-soluble synthetic polymer well known to effectively block ice recrystallization, by binding to ice. Here, we report the synthesis of a polymeric ice nucleator, which mimics the dense assembly of IBPs, using confined ice-binding polymers in a high-molar-mass molecular bottlebrush. Poly(vinyl alcohol)-based molecular bottlebrushes with different side-chain densities were synthesized via a combination of ring-opening metathesis polymerization (ROMP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, using "grafting-to" and "grafting-through" approaches. The facile preparation of the PVA bottlebrushes was performed via selective hydrolysis of the acetate of the poly(vinyl acetate) (PVAc) side chains of the PVAc bottlebrush precursors. Ice-binding polymer side-chain density was shown to be crucial for nucleation activity, with less dense brushes resulting in colder nucleation than denser brushes. This bio-inspired approach provides a synthetic framework for probing heterogeneous ice nucleation and a route toward defined synthetic nucleators for biotechnological applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。