Staphylococcus aureus specific lung resident memory CD4+ Th1 cells attenuate the severity of influenza virus induced secondary bacterial pneumonia

金黄色葡萄球菌特异性肺驻留记忆 CD4+ Th1 细胞减轻流感病毒引起的继发性细菌性肺炎的严重程度

阅读:6
作者:Jessica Braverman #, Ian R Monk #, Chenghao Ge, Glen P Westall, Timothy P Stinear, Linda M Wakim

Abstract

Staphylococcus aureus is a major cause of severe pulmonary infections. The evolution of multi-drug resistant strains limits antibiotic treatment options. To date, all candidate vaccines tested have failed, highlighting the need for an increased understanding of the immunological requirements for effective S. aureus immunity. Using an S. aureus strain engineered to express a trackable CD4+ T cell epitope and a murine model of S. aureus pneumonia, we show strategies that lodge Th1 polarised bacterium specific CD4+ tissue resident memory T cells (Trm) in the lung can significantly attenuate the severity of S. aureus pneumonia. This contrasts natural infection of mice that fails to lodge CD4+ Trm cells along the respiratory tract or provide protection against re-infection, despite initially generating Th17 bacterium specific CD4+ T cell responses. Interestingly, lack of CD4+ Trm formation after natural infection in mice appears to be reflected in humans, where the frequency of S. aureus reactive CD4+ Trm cells in lung tissue is also low. Our findings reveal the protective capacity of S. aureus specific respiratory tract CD4+ Th1 polarised Trm cells and highlight the potential for targeting these cells in vaccines that aim to prevent the development of S. aureus pneumonia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。