Endogenous H2S targets mitochondria to promote continual phagocytosis of erythrocytes by microglia after intracerebral hemorrhage

内源性 H2S 靶向线粒体促进脑出血后小胶质细胞持续吞噬红细胞

阅读:10
作者:Xiaoling Yan, Meijun He, Hui Huang, Qi Wang, Yu Hu, Xiaoying Wang, Meng Jin, Yi Wang, Yiqing Xia, Yi Li, Gang Chen, Jian Cheng, Jia Jia

Abstract

Hematoma clearance, which is achieved largely by phagocytosis of erythrocytes in the hemorrhagic brain, limits injury and facilitates recovery following intracerebral hemorrhage (ICH). Efficient phagocytosis critically depends on the capacity of a single phagocyte to phagocytize dead cells continually. However, the mechanism underlying continual phagocytosis following ICH remains unclear. We aimed to investigate the mechanism in this study. By using ICH models, we found that the gasotransmitter hydrogen sulfide (H2S) is an endogenous modulator of continual phagocytosis following ICH. The expression of the H2S synthase cystathionine β-synthase (CBS) and CBS-derived H2S were elevated in brain-resident phagocytic microglia following ICH, which consequently promoted continual phagocytosis of erythrocytes by microglia. Microglia-specific deletion of CBS delayed spontaneous hematoma clearance via an H2S-mediated mechanism following ICH. Mechanistically, oxidation of CBS-derived endogenous H2S by sulfide-quinone oxidoreductase initiated reverse electron transfer at mitochondrial complex I, leading to superoxide production. Complex I-derived superoxide, in turn, activated uncoupling protein 2 (UCP2) to promote microglial phagocytosis of erythrocytes. Functionally, complex I and UCP2 were required for spontaneous hematoma clearance following ICH. Moreover, hyperhomocysteinemia, an established risk factor for stroke, impaired ICH-enhanced CBS expression and delayed hematoma resolution, while supplementing exogenous H2S accelerated hematoma clearance in mice with hyperhomocysteinemia. The results suggest that the microglial CBS-H2S-complex I axis is critical to continual phagocytosis following ICH and can be targeted to treat ICH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。