Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress

饥饿和应激条件下 O-GlcNAc 反应性抗体特异性的表征

阅读:5
作者:Russell A Reeves, Albert Lee, Roger Henry, Natasha E Zachara

Abstract

The dynamic modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) has been shown to regulate over 3000 proteins in a manner analogous to protein phosphorylation. O-GlcNAcylation regulates the cellular stress response and the cell cycle, and is implicated in the etiology of neurodegeneration, type II diabetes, and cancer. The antibody CTD110.6 is often used to detect changes in the O-GlcNAc modification. Recently, it has been demonstrated that CTD110.6 recognizes N-linked N,N'-diacetylchitobiose, which is thought to accumulate in cells experiencing severe glucose deprivation. In this study, we have addressed two questions: (1) Which other antibodies used to detect O-GlcNAc cross-react with N-linked N,N'-diacetylchitobiose? (2) Does N-linked N,N'-diacetylchitobiose accumulate in response to other cellular stressors? To delineate between O-GlcNAc and N-linked N,N'-diacetylchitobiose, we developed a workflow that has been used to confirm the specificity of a variety of O-GlcNAc-specific antibodies. Using this workflow we demonstrated that heat shock, osmotic stress, endoplasmic reticulum stress, oxidative stress, DNA damage, proteasomal inhibition, and ATP depletion induce O-GlcNAcylation but not N-linked N,N'-diacetylchitobiose. Moreover, we demonstrated that while glucose deprivation results in an induction in both O-GlcNAc and N-linked N,N'-diacetylchitobiose, the induction of N-linked N,N'-diacetylchitobiose is exacerbated by the removal of fetal bovine serum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。