Actinin BioID reveals sarcomere crosstalk with oxidative metabolism through interactions with IGF2BP2

Actinin BioID 揭示了肌节通过与 IGF2BP2 的相互作用与氧化代谢进行串扰

阅读:1
作者:Feria A Ladha ,Ketan Thakar ,Anthony M Pettinato ,Nicholas Legere ,Shahnaz Ghahremani ,Rachel Cohn ,Robert Romano ,Emily Meredith ,Yu-Sheng Chen ,J Travis Hinson

Abstract

Actinins are strain-sensing actin cross-linkers that are ubiquitously expressed and harbor mutations in human diseases. We utilize CRISPR, pluripotent stem cells, and BioID to study actinin interactomes in human cardiomyocytes. We identify 324 actinin proximity partners, including those that are dependent on sarcomere assembly. We confirm 19 known interactors and identify a network of RNA-binding proteins, including those with RNA localization functions. In vivo and biochemical interaction studies support that IGF2BP2 localizes electron transport chain transcripts to actinin neighborhoods through interactions between its K homology (KH) domain and actinin's rod domain. We combine alanine scanning mutagenesis and metabolic assays to disrupt and functionally interrogate actinin-IGF2BP2 interactions, which reveal an essential role in metabolic responses to pathological sarcomere activation using a hypertrophic cardiomyopathy model. This study expands our functional knowledge of actinin, uncovers sarcomere interaction partners, and reveals sarcomere crosstalk with IGF2BP2 for metabolic adaptation relevant to human disease. Keywords: BioID; IGF2BP2; RNA-binding proteins; Z-disc; actinin; mRNA localization; oxidative phosphorylation; protein-protein interactions; quantitative proteomics; sarcomere.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。