Thyroid hormone activates protein arginine methyltransferase 1 expression by directly inducing c-Myc transcription during Xenopus intestinal stem cell development

在非洲爪蟾肠道干细胞发育过程中,甲状腺激素通过直接诱导 c-Myc 转录来激活蛋白质精氨酸甲基转移酶 1 的表达

阅读:5
作者:Kenta Fujimoto, Kazuo Matsuura, Eileen Hu-Wang, Rosemary Lu, Yun-Bo Shi

Abstract

Adult organ-specific stem cells are essential for organ homeostasis and tissue repair and regeneration. The formation of such stem cells during vertebrate development is poorly understood. Intestinal remodeling during thyroid hormone (T3)-dependent Xenopus metamorphosis resembles postembryonic intestinal maturation in mammals. During metamorphosis, the intestine is remodeled de novo via a yet unknown mechanism. Protein arginine methyltransferase 1 (PRMT1) is up-regulated in and required for adult intestinal stem cells during metamorphosis. PRMT1 up-regulation is the earliest known molecular event for the developing stem cells and is also conserved during zebrafish and mouse intestinal development. To analyze how PRMT1 is specifically up-regulated during the formation of the adult intestinal stem cells, we cloned the Xenopus PRMT1 promoter and characterized it in CaCo-2 cells, a human cell line with intestinal stem cell characteristics. Through a series deletion and mutational analyses, we showed that the stem cell-associated transcription factor c-Myc could bind to a conserved site in the first intron to activate the promoter. Furthermore, we demonstrated that during metamorphosis, both c-Myc and PRMT1 were highly up-regulated, specifically in the remodeling intestine but not the resorbing tail, and that c-Myc was induced by T3 prior to PRMT1 up-regulation. In addition, we showed that T3 directly activated the c-Myc gene during metamorphosis in the intestine via binding of the T3 receptor to the c-Myc promoter. These results suggest that T3 induces c-Myc transcription directly in the intestine, that c-Myc, in turn, activates PRMT1 expression, and that this is an important gene regulation cascade controlling intestinal stem cell development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。