Pseudomonas aeruginosa Citrate Synthase GltA Influences Antibiotic Tolerance and the Type III Secretion System through the Stringent Response

铜绿假单胞菌柠檬酸合酶 GltA 通过严格反应影响抗生素耐受性和 III 型分泌系统

阅读:5
作者:Hao Chen, Xuetao Gong, Zheng Fan, Yushan Xia, Yongxin Jin, Fang Bai, Zhihui Cheng, Xiaolei Pan, Weihui Wu

Abstract

Carbohydrate metabolism plays essential roles in energy generation and providing carbon skeletons for amino acid syntheses. In addition, carbohydrate metabolism has been shown to influence bacterial susceptibility to antibiotics and virulence. In this study, we demonstrate that citrate synthase gltA mutation can increase the expression of the type III secretion system (T3SS) genes and antibiotic tolerance in Pseudomonas aeruginosa. The stringent response is activated in the gltA mutant, and deletion of the (p)ppGpp synthetase gene relA restores the antibiotic tolerance and expression of the T3SS genes to wild-type level. We further demonstrate that the intracellular level of cAMP is increased by the stringent response in the gltA mutant, which increases the expression of the T3SS master regulator gene exsA. Overall, our results reveal an essential role of GltA in metabolism, antibiotic tolerance, and virulence, as well as a novel regulatory mechanism of the stringent response-mediated regulation of the T3SS in P. aeruginosa. IMPORTANCE Rising antimicrobial resistance imposes a severe threat to human health. It is urgent to develop novel antimicrobial strategies by understanding bacterial regulation of virulence and antimicrobial resistance determinants. The stringent response plays an essential role in virulence and antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in humans. The bacterium produces an arsenal of virulence factors and is highly resistant to a variety of antibiotics. In this study, we provide evidence that citrate synthase GltA plays a critical role in P. aeruginosa metabolism and influences the antibiotic tolerance and virulence. We further reveal a role of the stringent response in the regulation of the antibiotic tolerance and virulence. The significance of this work is in elucidation of novel regulatory pathways that control both antibiotic tolerance and virulence in P. aeruginosa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。