Operation spinal cord regeneration: Patterning information residing in extracellular matrix glycosaminoglycans

脊髓再生手术:驻留在细胞外基质糖胺聚糖中的模式信息

阅读:6
作者:Alexander Lu, Alaina Baker-Nigh, Peng Sun

Conclusions

Patterning information residing in glycosaminoglycans might be key elements in restricting spinal cord regeneration. A recommended solution is not to edit the human genome, considering the conserved signaling pathways between animals, but to take advantage of the regenerative mechanism of axolotls and the current knowledge about the pattern-forming glycosaminoglycans for successful spinal cord regeneration and clinical applications.

Methods

A narrative review was conducted. Relevant studies were collected via an English-language PubMed database search and those known to the authors.

Results

Research during the past 30 years reveals that growth factors, along with spinal cord extracellular matrix, especially glycosaminoglycans, regulates axonal regrowth. Degrading chondroitin sulfate glycosaminoglycans by injecting the bacterial enzyme chondroitinase improves axonal sprouting and functional recovery after spinal cord injury in both rodents and rhesus monkeys. Furthermore, the brain is one of the first organs to develop during the embryonic period, and heparan sulfate glycosaminoglycans are key molecules required for brain development. Conclusions: Patterning information residing in glycosaminoglycans might be key elements in restricting spinal cord regeneration. A recommended solution is not to edit the human genome, considering the conserved signaling pathways between animals, but to take advantage of the regenerative mechanism of axolotls and the current knowledge about the pattern-forming glycosaminoglycans for successful spinal cord regeneration and clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。