Dexmedetomidine Inhibits Voltage-Gated Sodium Channels via α 2-Adrenoceptors in Trigeminal Ganglion Neurons

右美托咪啶通过 α2-肾上腺素能受体抑制三叉神经节神经元电压门控钠通道

阅读:15
作者:Sang-Taek Im, Youn Yi Jo, Gayoung Han, Hyun Jung Jo, Yong Ho Kim, Chul-Kyu Park

Abstract

Dexmedetomidine, an α2-adrenoceptor agonist, is widely used as a sedative and analgesic agent in a number of clinical applications. However, little is known about the mechanism by which it exerts its analgesic effects on the trigeminal system. Two types of voltage-gated sodium channels, Nav1.7 and Nav1.8, as well as α2-adrenoceptors are expressed in primary sensory neurons of the trigeminal ganglion (TG). Using whole-cell patch-clamp recordings, we investigated the effects of dexmedetomidine on voltage-gated sodium channel currents (INa) via α2-adrenoceptors in dissociated, small-sized TG neurons. Dexmedetomidine caused a concentration-dependent inhibition of INa in small-sized TG neurons. INa inhibition by dexmedetomidine was blocked by yohimbine, a competitive α2-adrenoceptor antagonist. Dexmedetomidine-induced inhibition of INa was mediated by G protein-coupled receptors (GPCRs) as this effect was blocked by intracellular perfusion with the G protein inhibitor GDPβ-S. Our results suggest that the INa inhibition in small-sized TG neurons, mediated by the activation of Gi/o protein-coupled α2-adrenoceptors, might contribute to the analgesic effects of dexmedetomidine in the trigeminal system. Therefore, these new findings highlight a potential novel target for analgesic drugs in the orofacial region.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。