Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis

糖尿病肾病中肾脏特异性氧化还原酶/肌醇加氧酶的病理生物学:其对肾小管间质纤维化的影响

阅读:6
作者:Ping Xie, Lin Sun, Peter J Oates, Satish K Srivastava, Yashpal S Kanwar

Abstract

Renal-specific oxido-reductase/myoinositol oxygenase (RSOR/MIOX) is expressed in renal tubules. It catabolizes myo-inositol and its expression is increased in diabetic mice and in LLC-PK(1) cells under high-glucose ambience. Aldose reductase (AR) is another aldo-keto reductase that is expressed in renal tubules. It regulates the polyol pathway and plays an important role in glucose metabolism, osmolyte regulation, and ECM pathobiology via the generation of advanced glycation end products, reactive oxygen species, and activation of transforming growth factor (TGF)-beta. In view of the similarities between AR and RSOR/MIOX, the pathobiology of RSOR/MIOX and some of the cellular pathways affected by its overexpression were investigated. An increased expression of fibronectin was noted by transfection of LLC-PK(1) cells with pcDNA3.1-RSOR/MIOX. Similar changes were observed in LLC-PK(1) cells under high-glucose ambience, and they were notably lessened by RSOR/MIOX-small interfering (si) RNA treatment. The changes in tubulointerstitial fibronectin expression were also observed in the kidneys of db/db mice having high levels of RSOR. The pcDNA3.1-RSOR/MIOX transfectants had an increased NADH/NAD(+) ratio, PKC and TGF-beta activity, Raf1:Ras association, and p-ERK phosphorylation. These changes were significantly reduced by the inhibitors of PKC, aldose reductase, Ras farnesylation, and MEK1. Similar increases in various the above-noted parameters were observed under high-glucose ambience. Such changes were partially reversed with RSOR-siRNA treatment. Expression of E-cadherin and vimentin paralleled in cells overexpressing RSOR/MIOX or subjected to high-glucose ambience. These studies suggest that RSOR/MIOX modulates various downstream pathways affected by high-glucose ambience, and conceivably it plays a role in the pathobiology of tubulointerstitium in diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。