Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome

患有糖尿病或代谢综合征的非裔美国人和欧洲裔美国人的花生四烯酸水平和脂肪酸去饱和酶 (FADS) 基因变异的差异

阅读:6
作者:Susan Sergeant, Christina E Hugenschmidt, Megan E Rudock, Julie T Ziegler, Priscilla Ivester, Hannah C Ainsworth, Dhananjay Vaidya, L Douglas Case, Carl D Langefeld, Barry I Freedman, Donald W Bowden, Rasika A Mathias, Floyd H Chilton

Abstract

Over the past 50 years, increases in dietary n-6 PUFA, such as linoleic acid, have been hypothesised to cause or exacerbate chronic inflammatory diseases. The present study examines an individual's innate capacity to synthesise n-6 long-chain PUFA (LC-PUFA) with respect to the fatty acid desaturase (FADS) locus in Americans of African and European descent with diabetes or the metabolic syndrome. Compared with European Americans (EAm), African Americans (AfAm) exhibited markedly higher serum levels of arachidonic acid (AA) (EAm 7·9 (sd 2·1), AfAm 9·8 (sd 1·9) % of total fatty acids; P < 2·29 × 10⁻&sup9;) and the AA:n-6-precursor fatty acid ratio, which estimates FADS1 activity (EAm 5·4 (sd 2·2), AfAm 6·9 (sd 2·2); P = 1·44 × 10⁻&sup5;). In all, seven SNP mapping to the FADS locus revealed strong association with AA, EPA and dihomo-γ-linolenic acid (DGLA) in the EAm. Importantly, EAm homozygous for the minor allele (T) had significantly lower AA levels (TT 6·3 (sd 1·0); GG 8·5 (sd 2·1); P = 3·0 × 10⁻&sup5;) and AA:DGLA ratios (TT 3·4 (sd 0·8), GG 6·5 (sd 2·3); P = 2·2 × 10⁻&sup7;) but higher DGLA levels (TT 1·9 (sd 0·4), GG 1·4 (sd 0·4); P = 3·3 × 10⁻&sup7;) compared with those homozygous for the major allele (GG). Allele frequency patterns suggest that the GG genotype at rs174537 (associated with higher circulating levels of AA) is much higher in AfAm (0·81) compared with EAm (0·46). Similarly, marked differences in rs174537 genotypic frequencies were observed in HapMap populations. These data suggest that there are probably important differences in the capacity of different populations to synthesise LC-PUFA. These differences may provide a genetic mechanism contributing to health disparities between populations of African and European descent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。