Intra-Vitreal Administration of Microvesicles Derived from Human Adipose-Derived Multipotent Stromal Cells Improves Retinal Functionality in Dogs with Retinal Degeneration

玻璃体内注射源自人类脂肪来源的多能基质细胞的微囊泡可改善患有视网膜变性的狗的视网膜功能

阅读:4
作者:Anna Cislo-Pakuluk, Agnieszka Smieszek, Natalia Kucharczyk, Peter G C Bedford, Krzysztof Marycz2

Abstract

This study was designed to determine the influence of microvesicles (MVs) derived from multipotent stromal cells isolated from human adipose tissue (hASCs) on retinal functionality in dogs with various types of retinal degeneration. The biological properties of hASC-MVs were first determined using an in vitro model of retinal Muller-like cells (CaMLCs). The in vitro assays included analysis of hASC-MVs influence on cell viability and metabolism. Brain-derived neurotrophic factor (BDNF) expression was also determined. Evaluation of the hASC-MVs was performed under normal and oxidative stress conditions. Preliminary clinical studies were performed on ten dogs with retinal degeneration. The clinical studies included behavioral tests, fundoscopy and electroretinography before and after hASC-MVs intra-vitreal injection. The in vitro study showed that CaMLCs treated with hASC-MVs were characterized by improved viability and mitochondrial potential, both under normal and oxidative stress conditions. Additionally, hASC-MVs under oxidative stress conditions reduced the number of senescence-associated markers, correlating with the increased expression of BDNF. The preliminary clinical study showed that the intra-vitreal administration of hASC-MVs significantly improved the dogs' general behavior and tracking ability. Furthermore, fundoscopy demonstrated that the retinal blood vessels appeared to be less attenuated, and electroretinography using HMsERG demonstrated an increase in a- and b-wave amplitude after treatment. These results shed promising light on the application of cell-free therapies in veterinary medicine for retinal degenerative disorders treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。