Involvement of 2-deoxyglucose-6-phosphate phosphatases in facilitating resilience against ionic and osmotic stress in Saccharomyces cerevisiae

2-脱氧葡萄糖-6-磷酸磷酸酶参与促进酿酒酵母对离子和渗透胁迫的恢复

阅读:5
作者:Chinmayee Awasthy #, Zeinab Abdelmoghis Hefny #, Wouter Van Genechten, Uwe Himmelreich, Patrick Van Dijck

Abstract

The Saccharomyces cerevisiae DOG genes, DOG1 and DOG2, encode for 2-deoxyglucose-6-phosphate phosphatases. These enzymes of the haloacid dehalogenase superfamily are known to utilize the non-natural 2-deoxyglucose-6-phosphate as their substrate. However, their physiological substrate and hence their biological role remain elusive. In this study, we investigated their potential role as enzymes in biosynthesizing glycerol through an alternative pathway, which involves the dephosphorylation of dihydroxyacetone phosphate into dihydroxyacetone, as opposed to the classical pathway which utilizes glycerol 3-phosphate. Overexpression of DOG1 or DOG2 rescued the osmotic and ionic stress-sensitive phenotype of gpp1∆ gpp2∆ or gpd1∆ gpd2∆ mutants, both affected in the production of glycerol. While small amounts of glycerol were observed in the DOG overexpression strains in the gpp1∆ gpp2∆ background, no glycerol was detected in the gpd1∆ gpd2∆ mutant background. This indicates that overexpression of the DOG enzymes can rescue the osmosensitive phenotype of the gpd1∆ gpd2∆ mutant independent of glycerol production. We also did not observe a drop in glycerol levels in the gpp1∆ gpp2∆ dog1∆ dog2∆ as compared to the gpp1∆ gpp2∆ mutant, indicating that the Dog enzymes are not involved in glycerol biosynthesis. This indicates that Dog enzymes have a distinct substrate and their function within the cell remains undiscovered. Importance: Yeast stress tolerance is an important characteristic that is studied widely, not only regarding its fundamental insights but also for its applications within the biotechnological industry. Here, we investigated the function of two phosphatase encoding genes, DOG1 and DOG2, which are induced as part of the general stress response pathway, but their natural substrate in the cells remains unclear. They are known to dephosphorylate the non-natural substrate 2-deoxyglucose-6-phosphate. Here, we show that overexpression of these genes overcomes the osmosensitive phenotype of mutants that are unable to produce glycerol. However, in these overexpression strains, very little glycerol is produced indicating that the Dog enzymes do not seem to be involved in a previously predicted alternative pathway for glycerol production. Our work shows that overexpression of the DOG genes may improve osmotic and ionic stress tolerance in yeast.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。