Silk-based gene carriers with cell membrane destabilizing peptides

含有细胞膜不稳定肽的丝基基因载体

阅读:13
作者:Keiji Numata, David L Kaplan

Abstract

Complexes of recombinant silk-polylysine molecules with ppTG1 peptide, a lysine-rich cell membrane destabilizing peptide to bind plasmid DNA (pDNA), are designed as less-cytotoxic and highly efficient gene carriers. The peptide destabilizes the cell membrane and promotes gene transfer. Our particular interest is in how ppTG1 enhances transfection efficiency of the silk-based delivery system into human cells. Genetically engineered silk proteins containing polylysine and the monomeric and dimeric ppTG1 sequences are synthesized in Escherichia coli , followed by transfection experiments. The pDNA complexes of silk-polylysine-ppTG1 dimer recombinant proteins prepared at an N/P 2 (the ratio of number of amines/phosphates from pDNA) shows the highest transfection efficiency into human embryonic kidney (HEK) cells, the level of which is comparable to the transfection reagent Lipofectamine 2000. The assemblies show a globular morphology with an average hydrodynamic diameter of 99 nm and almost no β-sheet structure. Additionally, the silk-based pDNA complexes demonstrate excellent DNase resistance as well as efficient release of the pDNA by enzymes that degrade silk proteins. Also, comparison with β-sheet induced silk-based pDNA complexes indicates that the β-sheet structure content of the silk sequence of the pDNA complexes controls the enzymatic degradation rate of the complexes and, hence, can regulate the release profile of genes from the complexes. The bioengineered silk-based gene delivery vehicles containing cell membrane destabilizing peptides are therefore concluded to have potential for a less-toxic and controlled-release gene delivery system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。