A generalized framework for computational design and mutational scanning of T-cell receptor binding interfaces

细胞受体结合界面的计算设计和突变扫描的通用框架

阅读:10
作者:Timothy P Riley, Cory M Ayres, Lance M Hellman, Nishant K Singh, Michael Cosiano, Jennifer M Cimons, Michael J Anderson, Kurt H Piepenbrink, Brian G Pierce, Zhiping Weng, Brian M Baker

Abstract

T-cell receptors (TCRs) have emerged as a new class of therapeutics, most prominently for cancer where they are the key components of new cellular therapies as well as soluble biologics. Many studies have generated high affinity TCRs in order to enhance sensitivity. Recent outcomes, however, have suggested that fine manipulation of TCR binding, with an emphasis on specificity may be more valuable than large affinity increments. Structure-guided design is ideally suited for this role, and here we studied the generality of structure-guided design as applied to TCRs. We found that a previous approach, which successfully optimized the binding of a therapeutic TCR, had poor accuracy when applied to a broader set of TCR interfaces. We thus sought to develop a more general purpose TCR design framework. After assembling a large dataset of experimental data spanning multiple interfaces, we trained a new scoring function that accounted for unique features of each interface. Together with other improvements, such as explicit inclusion of molecular flexibility, this permitted the design new affinity-enhancing mutations in multiple TCRs, including those not used in training. Our approach also captured the impacts of mutations and substitutions in the peptide/MHC ligand, and recapitulated recent findings regarding TCR specificity, indicating utility in more general mutational scanning of TCR-pMHC interfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。