Vectorial transport of the arginine derivatives asymmetric dimethylarginine (ADMA) and L-homoarginine by OATP4C1 and P-glycoprotein studied in double-transfected MDCK cells

在双转染的 MDCK 细胞中研究 OATP4C1 和 P-糖蛋白对精氨酸衍生物不对称二甲基精氨酸 (ADMA) 和 L-高精氨酸的矢量运输

阅读:10
作者:Emir Taghikhani, Renke Maas, R Verena Taudte, Arne Gessner, Martin F Fromm, Jörg König

Abstract

Elevated plasma concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) and low plasma concentrations of L-homoarginine are independently associated with cardiovascular events and mortality. Key enzymes involved in the homeostasis of both arginine derivatives are expressed in proximal tubule cells of the kidney. To get access to these enzymes, transport proteins are important. One of the transporters mediating the transport of ADMA and L-homoarginine is the solute carrier superfamily (SLC) member OATP4C1, located in the basolateral membrane of proximal tubule cells. To gain insights into the role of export pumps in the transport of both substances, we established a double-transfected MDCK cell line expressing OATP4C1 and the export pump P-glycoprotein (P-gp). Using MDCK cell monolayers, we demonstrated in time-dependent and concentration-dependent vectorial transport experiments that ADMA and L-homoarginine are transported from the basolateral to the apical compartment of MDCK-OATP4C1-P-gp cells with significantly higher transport rates compared to single-transfected MDCK-OATP4C1, MDCK-P-gp and MDCK-VC (control) cells (e.g. transport ratio MDCK-OATP4C1-P-gp/MDCK-VC: for 50 µM ADMA = 2.0-fold, for 50 µM L-homoarginine = 3.4-fold). These results indicate that both OATP4C1 and P-gp transport the arginine derivatives ADMA and L-homoarginine and are, therefore, important for the homoeostasis of both substances.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。