A stretch of polybasic residues mediates Cdc42 GTPase-activating protein (CdGAP) binding to phosphatidylinositol 3,4,5-trisphosphate and regulates its GAP activity

一段多碱基残基介导 Cdc42 GTPase 活化蛋白 (CdGAP) 与磷脂酰肌醇 3,4,5-三磷酸结合并调节其 GAP 活性

阅读:6
作者:Fereshteh Karimzadeh, Martin Primeau, Driss Mountassif, Isabelle Rouiller, Nathalie Lamarche-Vane

Abstract

The Rho family of small GTPases are membrane-associated molecular switches involved in the control of a wide range of cellular activities, including cell migration, adhesion, and proliferation. Cdc42 GTPase-activating protein (CdGAP) is a phosphoprotein showing GAP activity toward Rac1 and Cdc42. CdGAP activity is regulated in an adhesion-dependent manner and more recently, we have identified CdGAP as a novel molecular target in signaling and an essential component in the synergistic interaction between TGFβ and Neu/ErbB-2 signaling pathways in breast cancer cells. In this study, we identified a small polybasic region (PBR) preceding the RhoGAP domain that mediates specific binding to negatively charged phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). In vitro reconstitution of membrane vesicles loaded with prenylated Rac1 demonstrates that the PBR is required for full activation of CdGAP in the presence of PI(3,4,5)P3. In fibroblast cells, the expression of CdGAP protein mutants lacking an intact PBR shows a significant reduced ability of the protein mutants to induce cell rounding or to mediate negative effects on cell spreading. Furthermore, an intact PBR is required for CdGAP to inactivate Rac1 signaling into cells, whereas it is not essential in an in vitro context. Altogether, these studies reveal that specific interaction between negatively charged phospholipid PI(3,4,5)P3 and the stretch of polybasic residues preceding the RhoGAP domain regulates CdGAP activity in vivo and is required for its cellular functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。