Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling

锂通过增强 PKA 和 AKT 信号传导诱导的 CREB 活性增加来抑制 Smad3/4 转录激活

阅读:7
作者:Min-Huei Liang, Jens R Wendland, De-Maw Chuang

Abstract

Smad proteins are intracellular transducers for transforming growth factor-beta (TGF-beta) signaling and play a critical role in differentiation, tissue repair and apoptosis of the central nervous system. Both TGF-beta and its regulated gene, plasminogen activator inhibitor type-1 (PAI-1), have been implicated in the etiology and progression of neurodegenerative diseases and mood disorders. We previously reported that GSK-3beta protein depletion suppresses Smad3/4-dependent gene transcription and causes a reduction in PAI-1 expression. Here, we provide evidence that lithium, the drug for the treatment and prophylaxis of bipolar disorder, inhibits Smad-dependent signaling by regulating cAMP-protein kinase A (PKA), AKT-glycogen synthase kinase-3beta (GSK-3beta), and CRE-dependent signaling pathways in neuron-enriched cerebral cortical cultures of rats. We demonstrate that lithium-induced activation of these pathways inhibits Smad3/4-dependent gene transcription through an increase in pCREB(Ser133) protein levels, an enhanced interaction between pCREB(Ser133) and p300/CBP, which causes Smad3/4-p300/CBP complex disruption and transcriptional suppression of Smad3/4-dependent genes. Therapeutic implications of our findings are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。