Activation of the nucleotide oligomerization domain signaling pathway by the non-bacterially derived xanthone drug 5'6-dimethylxanthenone-4-acetic acid (Vadimezan)

非细菌衍生的黄酮药物 5'6-二甲基黄酮-4-乙酸 (Vadimezan) 激活核苷酸寡聚化域信号通路

阅读:7
作者:Guanjun Cheng, Jing Sun, Zvi G Fridlender, Liang-Chuan S Wang, Lai-Ming Ching, Steven M Albelda

Abstract

The cytosolic nucleotide-binding oligomerization domain 1 (NOD1)/CARD4 and NOD2/CARD15 proteins are members of NOD-like receptors recognizing specific motifs within peptidoglycans of both Gram-negative and Gram-positive bacteria. NOD1 and NOD2 signal via the downstream adaptor serine/threonine kinase RIP2/CARDIAK/RICK to initiate NF-kappaB activation and the release of inflammatory cytokines/chemokines. In this report, we show that 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a cell-permeable, small molecule that has anti-tumor activity, can also activate NOD1 and NOD2. This was demonstrated: 1) by using human embryonic kidney epithelial (HEK) 293 cells transfected with a NF-kappaB reporter plasmid in combination with NOD1 or NOD2 expression plasmids; 2) by inhibiting DMXAA-induced chemokine (CXCL10) mRNA and protein production in the AB12 mesothelioma cell line using a pharmacological inhibitor of RICK kinase, SB20358; and 3) by using small interfering RNA to knock down NOD2 and lentiviral short hairpin RNA to knock down RICK. These findings expand the potential ligands for the NOD-like receptors, suggesting that other xanthone compounds may act similarly and could be developed as anti-tumor agents. This information also expands our knowledge on the mechanisms of action of the anti-tumor agent DMXAA (currently in clinical trials) and may be important for its biological activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。