Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation

白细胞介素-17通过p38 MAPK和ERK1 / 2依赖的NF-κB和C / EBPβ激活刺激肝细胞和平滑肌细胞中C反应蛋白的表达

阅读:8
作者:Devang N Patel, Carter A King, Steven R Bailey, Jeffrey W Holt, Kaliyamurthi Venkatachalam, Alok Agrawal, Anthony J Valente, Bysani Chandrasekar

Abstract

Elevated systemic levels of the acute phase C-reactive protein (CRP) are predictors of future cardiovascular events. There is evidence that CRP may also play a direct role in atherogenesis. Here we determined whether the proinflammatory interleukin (IL)-17 stimulates CRP expression in hepatocytes (Hep3B cell line and primary hepatocytes) and coronary artery smooth muscle cells (CASMC). Our results demonstrate that IL-17 potently induces CRP expression in Hep3B cells independent of IL-1beta and IL-6. IL-17 induced CRP promoter-driven reporter gene activity that could be attenuated by dominant negative IkappaBalpha or C/EBPbeta knockdown and stimulated both NF-kappaB and C/EBP DNA binding and reporter gene activities. Targeting NF-kappaB and C/EBPbeta activation by pharmacological inhibitors, small interfering RNA interference and adenoviral transduction of dominant negative expression vectors blocked IL-17-mediated CRP induction. Overexpression of wild type p50, p65, and C/EBPbeta stimulated CRP transcription. IL-17 stimulated p38 MAPK and ERK1/2 activation, and SB203580 and PD98059 blunted IL-17-mediated NF-kappaB and C/EBP activation and CRP transcription. These results, confirmed in primary human hepatocytes and CASMC, demonstrate for the first time that IL-17 is a potent inducer of CRP expression via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation and suggest that IL-17 may mediate chronic inflammation, atherosclerosis, and thrombosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。