The HoxC4 homeodomain protein mediates activation of the immunoglobulin heavy chain 3' hs1,2 enhancer in human B cells. Relevance to class switch DNA recombination

HoxC4 同源结构域蛋白介导人类 B 细胞中免疫球蛋白重链 3' hs1,2 增强子的激活。与类别转换 DNA 重组的相关性

阅读:6
作者:Edmund C Kim, Christopher R Edmonston, Xiaoping Wu, András Schaffer, Paolo Casali

Abstract

The immunoglobulin heavy chain (IgH) 3' regulatory region modulates IgH locus transcription, upon induction by specific trans-acting factors, and plays a significant role in class switch DNA recombination (CSR) and, perhaps, somatic hypermutation (SHM). CSR and SHM are central to the maturation of the antibody response. In contrast to the single 5'-hs3a-hs1,2-hs3b-hs4-3 ' mouse IgH 3 ' regulatory region, the human IgH 3 ' regulatory region exists as a 5'-hs3-hs1,2-hs4-3' cluster duplicated 3 ' of Calpha1 and Calpha2. We show here that the human hs1,2 element is the strongest enhancer of transcription, as directed by a V(H)1 or the ECS-Igamma3 promoter, thereby suggesting a dominant role for hs1,2 over hs3 and hs4 in the overall activity of the 3 ' regulatory region. Within hs1,2, we identified three regions (1, 2, and 3) that are all necessary, but individually not sufficient, for enhancement of transcription. In region 2, a HoxC4 site and a HoxC4/embedded octamer (HoxC4/Oct) site are conserved across human, mouse, rat, and rabbit. These two sites recruit HoxC4 and Oct-1/Oct-2, which act synergistically with the Oca-B coactivator to effect the full hs1,2-enhancing activity. HoxC4, Oct-1/Oct-2, and Oca-B recruitment is negligible in pro-B cells, moderate in pre-B cells, and maximal in germinal center B cells and plasma cells, where HoxC4, Oct-2, and Oca-B expression correlates with hs1,2 activation and ongoing CSR. The hs1,2mediated enhancement of V(H) and C(H) promoter-driven transcription as induced by HoxC4 and Oct-1/Oct-2 suggests an important role of these homeodomain proteins in the overall regulation of the IgH locus expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。