Frequency-dependent characteristics of nerve-mediated ATP and acetylcholine release from detrusor smooth muscle

神经介导逼尿肌平滑肌释放 ATP 和乙酰胆碱的频率依赖性特征

阅读:6
作者:Basu Chakrabarty, Katie Aitchison, Paul White, Carly J McCarthy, Anthony J Kanai, Christopher H Fry

Abstract

New findings: What is the central question of this study? Is the frequency dependence of co-transmitter release from postganglionic nerve fibres different for each transmitter? What is the main finding and its importance? Release of co-transmitters from the parasympathetic supply to detrusor smooth muscle can be independently regulated. This offers a targeted drug model to reduce selectively the release of transmitter associated with human pathologies (ATP) and may also be applicable to other smooth muscle-based disorders of visceral tissues. Nerve-mediated contractions of detrusor smooth muscle are mediated by acetylcholine (ACh) and ATP release in most animals. However, with the normal human bladder, only ACh is a functional transmitter, but in benign pathologies such as overactive bladder (OAB), ATP re-emerges as a secondary transmitter. The selective regulation of ATP release offers a therapeutic approach to manage OAB, in contrast to current primary strategies that target ACh actions. However, the release characteristics of nerve-mediated ACh and ATP are poorly defined and this study aimed to measure the frequency dependence of ACh and ATP release and determine if selective regulation of ATP or ACh was possible. Experiments were carried out in vitro with mouse detrusor with nerve-mediated ATP and ACh release measured simultaneously with tension recording. ATP was released in two frequency-dependent components, both at lower frequencies (mid-range 0.4 and 5.5 Hz stimulation) compared to a single compartment release of ACh at 14 Hz. Intervention with the phosphodiesterase type-5 inhibitor sildenafil attenuated ATP release, equally from both components, but had no effect on ACh release. These data demonstrate that nerve-mediated ACh and ATP release characteristics are distinct and may be separately manipulated. This offers a potential targeted drug model to manage benign lower urinary tract conditions such as OAB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。