Single Cell Bottlenecks in the Pathogenesis of Streptococcus pneumoniae

肺炎链球菌致病机制中的单细胞瓶颈

阅读:2
作者:Masamitsu Kono ,M Ammar Zafar ,Marisol Zuniga ,Aoife M Roche ,Shigeto Hamaguchi ,Jeffrey N Weiser

Abstract

Herein, we studied a virulent isolate of the leading bacterial pathogen Streptococcus pneumoniae in an infant mouse model of colonization, disease and transmission, both with and without influenza A (IAV) co-infection. To identify vulnerable points in the multiple steps involved in pneumococcal pathogenesis, this model was utilized for a comprehensive analysis of population bottlenecks. Our findings reveal that in the setting of IAV co-infection the organism must pass through single cell bottlenecks during bloodstream invasion from the nasopharynx within the host and in transmission between hosts. Passage through these bottlenecks was not associated with genetic adaptation by the pathogen. The bottleneck in transmission occurred between bacterial exit from one host and establishment in another explaining why the number of shed organisms in secretions is critical to overcoming it. These observations demonstrate how viral infection, and TLR-dependent innate immune responses it stimulates and that are required to control it, drive bacterial contagion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。