Synthesis, characterization and evaluations of TiO2 nanostructures prepared from different titania precursors for photocatalytic degradation of 4-chlorophenol in aqueous solution

不同二氧化钛前驱体制备的 TiO2 纳米结构的合成、表征及对水溶液中 4-氯苯酚光催化降解的评价

阅读:6
作者:Amir Payan, Moslem Fattahi, Behrooz Roozbehani

Background

The

Conclusion

The results of the photocatalytic activity measurement demonstrated that one-dimensional TNTs shows enhanced photocatalytic performance as compared to the TNPs, therefore, indicating the beneficial feature of TNTs as a photocatalyst for the degradation of pollutants. Besides, TiO2 nanostructures prepared from TALH precursor (TNT-P2 82%, TNP-P2 51%) has higher photocatalytic degradation efficiency as compared with TTIP precursors (TNT-P1 77%, TNP-P1 48%).

Methods

TiO2 nanostructures from different titania precursors as heterogeneous photocatalysis via hydrothermal method were synthesized. The as-prepared photocatalysts were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectra, surface area measurements, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The TiO2 photocatalysts were tested on the degradation of 4-Chlorophenol (4-CP) aqueous solution under UVC irradiation in a fabricated photoreactor.

Results

The effect of operating parameters including the; initial 4-CP concentration (50-150 mg/L), catalyst dosages (0-3 g/L) and solution pH (4-10) on the photocatalytic activity of the prepared catalysts were systematically investigated. The results show that amongst the TiO2 nanostructures under best conditions (initial 4-CP concentration of 50 mg/L, catalyst dosage of 2 g/L, pH of 4.0, Time of 180 min) TNT-P2 exhibited much higher photocatalytic degradation efficiency (82%) as compared with TNT-P1 (77%), TNP-P2 (51%), and TNP-P1 (48%). Moreover, the mechanism and tentative pathways of 4-CP degradation were explored. Finally, the kinetic study was performed and the Langmuir-Hinshelwood kinetic model was aptly fitted with the experimental data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。