Attenuative Effects of Platelet-Rich Plasma on 30 kDa Fibronectin Fragment-Induced MMP-13 Expression Associated with TLR2 Signaling in Osteoarthritic Chondrocytes and Synovial Fibroblasts

富血小板血浆对骨关节炎软骨细胞和滑膜成纤维细胞中与 TLR2 信号传导相关的 30 kDa 纤连蛋白片段诱导的 MMP-13 表达的衰减作用

阅读:7
作者:Hsien-Tsung Lu, Jeng-Wei Lu, Chian-Her Lee, Yi-Jen Peng, Herng-Sheng Lee, You-Hsiang Chu, Yi-Jung Ho, Feng-Cheng Liu, Pei-Hung Shen, Chih-Chien Wang

Abstract

Proteolytic fragments of fibronectin can have catabolic effects on cartilage, menisci, and synovium. Previous studies have reported that Toll-like receptor (TLR) signaling pathways might be associated with joint inflammation and joint destruction. Platelet-rich plasma (PRP) is increasingly being used to treat a range of joint conditions; however, it has yet to be determined whether PRP influences fibronectin fragment (FN-f) procatabolic activity and TLRs. In this study, human primary culture cells were treated with 30 kDa FN-f with/without PRP co-incubation, and then analyzed using real-time PCR to determine gene expression levels in articular chondrocytes, meniscal fibrochondrocytes, and synovial fibroblasts. Protein levels were evaluated by Western immunoblotting. This study observed an increase in the protein expression of matrix metalloproteinases (MMPs), Toll-like receptor 2 (TLR2), nitric oxide synthase 2 (NOS2), prostaglandin-endoperoxide synthase (PTGS2), and cyclooxygenase 2 (COX2) in articular chondrocytes, meniscal fibrochondrocytes, and synovial fibroblasts following insult with 30 kDa FN-f. Upregulation of these genes was significantly attenuated by PRP treatment. TLR2 and matrix metalloproteinase 13 (MMP-13) were also significantly attenuated by cotreatment with 30 kDa FN-f + PRP + TLR2 inhibitor. PRP treatment was shown to attenuate the 30 kDa FN-f-induced MMP-13 expression associated with the decreased expression of TLR2 in osteoarthritic chondrocytes and synovial fibroblasts. PRP treatment was also shown to attenuate procatabolic activity associated with MMP-13 expression via the TLR2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。