Phylogeny and Functional Differentiation of the Terpene Synthase Gene Family in Angiosperms with Emphasis on Rosa chinensis

被子植物萜烯合酶基因家族的系统发育和功能分化(以月季为例)

阅读:10
作者:Qi Li, Yifang Peng, Tao Zhao, Qijing Dong, Qian Yang, Xiaoyu Liu, Yu Han

Abstract

Terpenes are pivotal for plant growth, development, and adaptation to environmental stresses. With the advent of extensive genomic data and sophisticated bioinformatics tools, new insights into the evolutionary dynamics and functional diversification of terpene synthases (TPSs) have emerged. Despite genome-wide identifications of the TPS family in certain species, comprehensive cross-species analyses remain scarce. In this study, we conducted a genome-wide identification and subgroup classification of TPS families across 115 angiosperms with available genomic sequences. Our phylogenomic synteny network analysis elucidated the complex evolutionary history of TPS genes, revealing notable expansions and contractions among subgroups. Specifically, TPS-a showed significant expansion, while TPS-b was variably lost in some Poaceae, indicating adaptive responses. TPS-c maintained considerable conservation across species, whereas TPS-e/f diverged into distinct evolutionary trajectories despite functional overlap, with TPS-e further splitting into two angiosperm-specific clades. The TPS-g subgroup displayed lineage-restricted distribution, primarily in super-rosids and monocots. Notably, TPS-d and TPS-h subgroups were absent in angiosperms. Employing Rosa chinensis as a case study, we identified RcTPS23, a conserved bifunctional terpene synthase, highlighting the utility of cross-species synteny data in functional prediction. This comprehensive analysis elucidates the phylogenetic and functional landscape of TPS subgroups in angiosperms, providing a robust framework for predicting TPS function and guiding further functional investigations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。