Regulatory variation at glypican-3 underlies a major growth QTL in mice

磷脂酰肌醇蛋白聚糖-3 的调控变异是小鼠主要生长 QTL 的基础

阅读:4
作者:Fiona Oliver, Julian K Christians, Xiaojun Liu, Susan Rhind, Vinesh Verma, Claire Davison, Steve D M Brown, Paul Denny, Peter D Keightley

Abstract

The genetic basis of variation in complex traits remains poorly understood, and few genes underlying variation have been identified. Previous work identified a quantitative trait locus (QTL) responsible for much of the response to selection on growth in mice, effecting a change in body mass of approximately 20%. By fine-mapping, we have resolved the location of this QTL to a 660-kb region containing only two genes of known function, Gpc3 and Gpc4, and two other putative genes of unknown function. There are no non-synonymous polymorphisms in any of these genes, indicating that the QTL affects gene regulation. Mice carrying the high-growth QTL allele have approximately 15% lower Gpc3 mRNA expression in kidney and liver, whereas expression differences at Gpc4 are non-significant. Expression profiles of the two other genes within the region are inconsistent with a factor responsible for a general effect on growth. Polymorphisms in the 3' untranslated region of Gpc3 are strong candidates for the causal sequence variation. Gpc3 loss-of-function mutations in humans and mice cause overgrowth and developmental abnormalities. However, no deleterious side-effects were detected in our mice, indicating that genes involved in Mendelian diseases also contribute to complex trait variation. Furthermore, these findings show that small changes in gene expression can have substantial phenotypic effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。