TLR4 signaling improves PD-1 blockade therapy during chronic viral infection

TLR4 信号改善慢性病毒感染期间的 PD-1 阻断疗法

阅读:5
作者:Yidan Wang, Young Rock Chung, Simon Eitzinger, Nicole Palacio, Shana Gregory, Mitra Bhattacharyya, Pablo Penaloza-MacMaster

Abstract

CD8 T cells are necessary for the elimination of intracellular pathogens, but during chronic viral infections, CD8 T cells become exhausted and unable to control the persistent infection. Programmed cell death-1 (PD-1) blockade therapies have been shown to improve CD8 T cell responses during chronic viral infections. These therapies have been licensed to treat cancers in humans, but they have not yet been licensed to treat chronic viral infections because limited benefit is seen in pre-clinical animal models of chronic infection. In the present study, we investigated whether TLR4 triggering could improve PD-1 therapy during a chronic viral infection. Using the model of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, we show that TLR4 triggering with sublethal doses of lipopolysaccharide (LPS) followed by PD-1 blockade results in superior improvement in circulating virus-specific CD8 T cell responses, relative to PD-1 blockade alone. Moreover, we show that the synergy between LPS and PD-1 blockade is dependent on B7 costimulation and mediated by a dendritic cell (DC) intrinsic mechanism. Systemic LPS administration may have safety concerns, motivating us to devise a safer regimen. We show that ex vivo activation of DCs with LPS, followed by adoptive DC transfer, results in a similar potentiation of PD-1 therapy without inducing wasting disease. In summary, our data demonstrate a previously unidentified role for LPS/TLR4 signaling in modulating the host response to PD-1 therapy. These findings may be important for developing novel checkpoint therapies against chronic viral infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。