JNK Pathway-Associated Phosphatase Deficiency Facilitates Atherosclerotic Progression by Inducing T-Helper 1 and 17 Polarization and Inflammation in an ERK- and NF-κB Pathway-Dependent Manner

JNK 通路相关磷酸酶缺乏以 ERK 和 NF-κB 通路依赖的方式诱导 T 辅助细胞 1 和 17 极化和炎症,从而促进动脉粥样硬化进展

阅读:9
作者:Xinjing Chen, Mingcheng Fang, Jingxuan Hong, Yansong Guo

Aim

JNK pathway-associated phosphatase (JKAP) regulates T cell-mediated immunity and inflammation, which are involved in atherosclerosis pathogenesis. This study investigated the effects of JKAP on T-helper (Th) cell polarization, inflammation, and atherosclerotic progression.

Conclusion

JKAP ablation facilitates atherosclerosis progression by promoting Th1 and 17 polarization and inflammation through regulation of the ERK and NF-κB pathways.

Methods

Serum JKAP levels were measured in 30 patients with coronary heart disease (CHD) and 30 controls. CHD blood naïve CD4+ T cells were acquired, followed by JKAP overexpression and knockdown with or without treatment with PD98059 (ERK inhibitor) or BAY-11-7082 (NF-κB inhibitor) in vitro. CD4+ T-cell conditional JKAP ablation mice were established in vivo, followed by the construction of an atherosclerosis model.

Results

JKAP was reduced and negatively correlated with the Gensini score, CRP, Th1 cells, Th17 cells, and proinflammatory cytokines in patients with CHD. In vitro, JKAP overexpression suppressed Th1 and Th17 cell differentiation and proinflammatory cytokines, whereas JKAP knockdown exerted the opposite effect; however, JKAP modification did not affect Th2 cell differentiation. Interestingly, JKAP negatively regulated the ERK and NF-κB pathways; meanwhile, the PD98059 and BAY-11-7082 treatments repressed Th1 and Th17 cell differentiation, and attenuated the effect of JKAP knockdown on these indices. In vivo, conditional CD4+ T-cell JKAP ablation increased Th1 and Th17 cell polarization in the spleen, lymph node, blood, and/or aortic root. Furthermore, CD4+ T-cell conditional JKAP ablation exaggerated atherosclerotic lesions in the aorta, elevated CD4+ cell infiltration and proinflammatory cytokines in the aortic root, and activated the ERK and NF-κB pathways in the aortic root.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。