Autophagic degradation of CDK4 is responsible for G0/G1 cell cycle arrest in NVP-BEZ235-treated neuroblastoma

CDK4 的自噬降解是导致 NVP-BEZ235 治疗的神经母细胞瘤中 G0/G1 细胞周期停滞的原因

阅读:5
作者:Zhen Liu, Xiao-Yang Wang, Han-Wei Wang, Shan-Ling Liu, Chao Zhang, Feng Liu, Ying Guo, Feng-Hou Gao

Background

CDK4 is highly expressed and associated with poor prognosis and decreased survival in advanced neuroblastoma (NB). Targeting CDK4 degradation presents a potentially promising therapeutic strategy compared to conventional CDK4 inhibitors. However, the autophagic degradation of the CDK4 protein and its anti-proliferation effect in NB cells has not been mentioned.

Conclusions

Autophagic degradation of CDK4 plays a pivotal role in G0/G1 cell cycle arrest in NB cells treated with NVP-BEZ235.

Results

We identified autophagy as a new pathway for the degradation of CDK4. Firstly, autophagic degradation of CDK4 is critical for NVP-BEZ235-induced G0/G1 arrest, as demonstrated by the overexpression of CDK4, autophagy inhibition, and blockade of autophagy-related genes. Secondly, we present the first evidence that p62 binds to CDK4 and then enters the autophagy-lysosome to degrade CDK4 in a CTSB-dependent manner in NVP-BEZ235 treated NB cells. Similar results regarding the interaction between p62 and CDK4 were observed in the NVP-BEZ235 treated NB xenograft mouse model. Conclusions: Autophagic degradation of CDK4 plays a pivotal role in G0/G1 cell cycle arrest in NB cells treated with NVP-BEZ235.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。