A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model

多尺度分子动力学分析揭示唾液酸化对 CRISPR/Cas9 衍生模型中 EGFR 聚集的影响

阅读:8
作者:Shwee Khuan Leong, Jye-Chian Hsiao, Jiun-Jie Shie

Abstract

Bacterial and viral pathogens can modulate the glycosylation of key host proteins to facilitate pathogenesis by using various glycosidases, particularly sialidases. Epidermal growth factor receptor (EGFR) signaling is activated by ligand-induced receptor dimerization and oligomerization. Ligand binding induces conformational changes in EGFR, leading to clusters and aggregation. However, information on the relevance of EGFR clustering in the pattern of glycosylation during bacterial and viral invasion remains unclear. In this study, (1) we established CRISPR/Cas9-mediated GFP knock-in (EGFP-KI) HeLa cells expressing fluorescently tagged EGFR at close to endogenous levels to study EGF-induced EGFR clustering and molecular dynamics; (2) We studied the effect of sialylation on EGF-induced EGFR clustering and localization in live cells using a high content analysis platform and raster image correlation spectroscopy (RICS) coupled with a number and brightness (N&B) analysis; (3) Our data reveal that the removal of cell surface sialic acids by sialidase treatment significantly decreases EGF receptor clustering with reduced fluorescence intensity, number, and area of EGFR-GFP clusters per cell upon EGF stimulation. Sialylation appears to mediate EGF-induced EGFR clustering as demonstrated by the change of EGFR-GFP clusters in the diffusion coefficient and molecular brightness, providing new insights into the role of sialylation in EGF-induced EGFR activation; and (4) We envision that the combination of CRISPR/Cas9-mediated fluorescent tagging of endogenous proteins and fluorescence imaging techniques can be the method of choice for studying the molecular dynamics and interactions of proteins in live cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。