Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: a seasonal study at Ottenby Bird Observatory in South-eastern Sweden

候鸟是蜱虫和蜱传病原体伯氏疏螺旋体细菌以及蜱传脑炎 (TBE) 病毒的传播者:在瑞典东南部奥滕比鸟类观察站进行的一项季节性研究

阅读:4
作者:Peter Wilhelmsson, Thomas G T Jaenson, Björn Olsen, Jonas Waldenström, Per-Eric Lindgren

Background

Birds can act as reservoirs of tick-borne pathogens and can also disperse pathogen-containing ticks to both nearby and remote localities. The aims of this study were to estimate tick infestation patterns on migratory birds and the prevalence of different Borrelia species and tick-borne encephalitis virus (TBEV) in ticks removed from birds in south-eastern Sweden.

Conclusions

The results corroborate the view that the contributions of birds to human disease are substantial, particularly as blood hosts for ticks and for their short-, medium-, and long-distance dispersal. Moreover, several ground-foraging bird species appear to be important for the maintenance and dispersal of Borrelia species. The absence of TBEV in the ticks conforms to other similar studies.

Methods

Ticks were collected from resident and migratory birds captured at the Ottenby Bird Observatory, Öland, Sweden, from March to November 2009. Ticks were molecularly identified to species, and morphologically to developmental stage, and the presence of Borrelia bacteria and TBEV was determined by quantitative real-time PCR.

Results

A total of 1339 ticks in the genera Haemaphysalis, Hyalomma, and Ixodes was recorded of which I. ricinus was the most abundant species. Important tick hosts were the European robin (Erithacus rubecula), Blackbird (Turdus merula), Tree pipit (Anthus trivialis), Eurasian wren (Troglodytes troglodytes), Common redstart (Phoenicurus phoenicurus), Willow warbler (Phylloscopus trochilus), and Common whitethroat (Sylvia communis). Borrelia bacteria were detected in 25% (285/1,124) of the detached ticks available for analysis. Seven Borrelia species (B. afzelii, B. burgdorferi (s.s.), B. garinii, B. lusitaniae, B. turdi, B. valaisiana, and B. miyamotoi) were identified. B. turdi was recorded for the first time in ticks in Sweden. The number of Borrelia cells per tick ranged from 2.0 × 100 to 7.0 × 105. B. miyamotoi-containing ticks contained a significantly higher median number of Borrelia cells than B. burgdorferi (s.l.)-containing ticks. B. garinii and B. miyamotoi were the most prevalent Borrelia species in tick larvae. Larvae of I. ricinus with B. garinii were removed from seven bird species, particularly S. communis and A. trivialis, which may suggest that the larvae had contracted the Borrelia bacteria from or via these birds. Also, a high percentage of tick larvae containing B. miyamotoi was removed from E. rubecula. All ticks were negative for TBEV. Conclusions: The results corroborate the view that the contributions of birds to human disease are substantial, particularly as blood hosts for ticks and for their short-, medium-, and long-distance dispersal. Moreover, several ground-foraging bird species appear to be important for the maintenance and dispersal of Borrelia species. The absence of TBEV in the ticks conforms to other similar studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。