Pathobiont-driven antibody sialylation through IL-10 undermines vaccination

病原菌通过IL-10介导的抗体唾液酸化会削弱疫苗接种效果。

阅读:2
作者:Chih-Ming Tsai ,Irshad A Hajam ,J R Caldera ,Austin Wt Chiang ,Cesia Gonzalez ,Xin Du ,Biswa Choudhruy ,Haining Li ,Emi Suzuki ,Fatemeh Askarian ,Ty'Tianna Clark ,Brian Lin ,Igor H Wierzbicki ,Angelica M Riestra ,Douglas J Conrad ,David J Gonzalez ,Victor Nizet ,Nathan E Lewis ,George Y Liu

Abstract

The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。