Hypoionic Shock Facilitates Aminoglycoside Killing of Both Nutrient Shift- and Starvation-Induced Bacterial Persister Cells by Rapidly Enhancing Aminoglycoside Uptake

低离子休克通过快速增强氨基糖苷类药物的吸收,促进氨基糖苷类药物杀死营养转移和饥饿诱导的细菌持久细胞

阅读:9
作者:Zhongyu Chen, Yuanyuan Gao, Boyan Lv, Fengqi Sun, Wei Yao, Yan Wang, Xinmiao Fu

Abstract

Bacterial persister cells are phenotypic variants that exhibit transient antibiotic tolerance and play a leading role in chronic infections and the development of antibiotic resistance. Determining the mechanism that underlies persister formation and developing anti-persister strategies, therefore, are clinically important goals. Here, we report that many gram-negative and gram-positive bacteria become highly tolerant to typical bactericidal antibiotics when the carbon source for their antibiotic-sensitive exponential growth phase is shifted to fumarate, suggesting a role for fumarate in persister induction. Nutrient shift-induced Escherichia coli but not Staphylococcus aureus persister cells can be killed by aminoglycosides upon hypoionic shock (i.e., the absence of ions), which is achieved by suspending the persisters in aminoglycoside-containing pure water for only 1 or 2 min. Such potentiation can be abolished by inhibitors of the electron transport chain (e.g., NaN3) or proton motive force (e.g., CCCP). Additionally, we show that hypoionic shock facilitates the eradication of starvation-induced E. coli but not S. aureus persisters by aminoglycosides, and that such potentiation can be significantly suppressed by NaN3 or CCCP. Mechanistically, hypoionic shock dramatically enhances aminoglycoside uptake by both nutrient shift- and starvation-induced E. coli persisters, whereas CCCP can diminish this uptake. Results of our study illustrate the general role of fumarate in bacterial persistence and may open new avenues for persister eradication and aminoglycoside use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。