Role of dual specificity phosphatases (DUSPs) in melanoma cellular plasticity and drug resistance

双特异性磷酸酶 (DUSP) 在黑色素瘤细胞可塑性和耐药性中的作用

阅读:5
作者:Mithalesh K Singh, Sarah Altameemi, Marcos Lares, Michael A Newton, Vijayasaradhi Setaluri

Abstract

Melanoma cells exhibit phenotypic plasticity that allows transition from a proliferative and differentiated phenotype to a more invasive and undifferentiated or transdifferentiated phenotype often associated with drug resistance. The mechanisms that control melanoma phenotype plasticity and its role in drug resistance are not fully understood. We previously demonstrated that emergence of MAPK inhibitor (MAPKi)-resistance phenotype is associated with decreased expression of stem cell proliferation genes and increased expression of MAPK inactivation genes, including dual specificity phosphatases (DUSPs). Several members of the DUSP family genes, specifically DUSP1, -3, -8 and -9, are expressed in primary and metastatic melanoma cell lines and pre-and post BRAFi treated melanoma cells. Here, we show that knockdown of DUSP1 or DUSP8 or treatment with BCI, a pharmacological inhibitor of DUSP1/6 decrease the survival of MAPKi-resistant cells and sensitizes them to BRAFi and MEKi. Pharmacological inhibition of DUSP1/6 upregulated nestin, a neural crest stem cell marker, in both MAPKi-sensitive cells and cells with acquired MAPKi-resistance. In contrast, treatment with BCI resulted in upregulation of MAP2, a neuronal differentiation marker, only in MAPKi-sensitive cells but caused downregulation of both MAP2 and GFAP, a glial marker, in all MAPKi-resistant cell lines. These data suggest that DUSP proteins are involved in the regulation of cellular plasticity cells and melanoma drug resistance and are potential targets for treatment of MAPKi-resistant melanoma.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。