Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast

参与氧化诱导芽殖酵母细胞死亡的 Rho5 相互作用蛋白的全基因组研究

阅读:10
作者:Komudi Singh, Mid Eum Lee, Maryam Entezari, Chan-Hun Jung, Yeonsoo Kim, Youngmin Park, Jack D Fioretti, Won-Ki Huh, Hay-Oak Park, Pil Jung Kang

Abstract

Rho GTPases play critical roles in cell proliferation and cell death in many species. As in animal cells, cells of the budding yeast Saccharomyces cerevisiae undergo regulated cell death under various physiological conditions and upon exposure to external stress. The Rho5 GTPase is necessary for oxidant-induced cell death, and cells expressing a constitutively active GTP-locked Rho5 are hypersensitive to oxidants. Yet how Rho5 regulates yeast cell death has been poorly understood. To identify genes that are involved in the Rho5-mediated cell death program, we performed two complementary genome-wide screens: one screen for oxidant-resistant deletion mutants and another screen for Rho5-associated proteins. Functional enrichment and interaction network analysis revealed enrichment for genes in pathways related to metabolism, transport, and plasma membrane organization. In particular, we find that ATG21, which is known to be involved in the CVT (Cytoplasm-to-Vacuole Targeting) pathway and mitophagy, is necessary for cell death induced by oxidants. Cells lacking Atg21 exhibit little cell death upon exposure to oxidants even when the GTP-locked Rho5 is expressed. Moreover, Atg21 interacts with Rho5 preferentially in its GTP-bound state, suggesting that Atg21 is a downstream target of Rho5 in oxidant-induced cell death. Given the high degree of conservation of Rho GTPases and autophagy from yeast to human, this study may provide insight into regulated cell death in eukaryotes in general.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。