In silico and in vitro chemometrics, cell toxicity and permeability of naringenin 8-sulphonate and derivatives

柚皮素 8-磺酸盐及其衍生物的计算机模拟和体外化学计量学、细胞毒性和渗透性

阅读:7
作者:Tiago Macedo, Fátima Paiva-Martins, Patrícia Valentão, David M Pereira

Background

Sulphur containing natural compounds are among the most biologically relevant metabolites in vivo. Naringenin 8-sulphonate from Parinari excelsa Sabine was evaluated in a previous work, demonstrating ability to act as a natural anti-inflammatory. Although the interference of this molecule against different inflammatory mediators was described, there is no information regarding its potential toxicity and pharmacokinetics, which are essential for its capacity to reach its therapeutic targets. In fact, despite the existence of reports on naringenin ADMET properties, the influence of sulphation patterns on them remains unknown. Objectives: This work aims to assess the in vitro pharmacokinetic and toxicological behavior of naringenin 8-sulphonate, as well as to understand the importance of the presence and position of the sulphur containing group for that.

Conclusion

In this study, we conclude that the sulphur containing group from naringenin 8-sulphonate is disadvantageous for the molecule in terms of ADMET properties, being particularly impactful in the permeability in intestinal barrier models. Thus, this work provides important insights regarding the role of flavonoids sulphation and sulphonation upon pharmacokinetics and toxicity.

Methods

Naringenin 8-sulphonate physicochemical and ADMET properties were investigated using in silico tools and cell-based in vitro models. At the same time, naringenin and naringenin 4'-O-sulphate were investigated to evaluate the impact of the sulphonate group on the

Results

Experimental determinations showed that none of the compounds was cytotoxic. In terms of genotoxicity, naringenin 8-sulphonate and naringenin caused significant DNA fragmentation, whereas naringenin 4'-O-sulphate did not. When it comes to permeability, the two sulphur-containing compounds with a sulphur containing group were clearly less capable to cross the Caco-2 cell barrier than naringenin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。