Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity

深入了解成纤维细胞生长因子受体自身抑制和配体结合混乱的分子基础

阅读:9
作者:Shaun K Olsen, Omar A Ibrahimi, Angela Raucci, Fuming Zhang, Anna V Eliseenkova, Avner Yayon, Claudio Basilico, Robert J Linhardt, Joseph Schlessinger, Moosa Mohammadi

Abstract

The prototypical fibroblast growth factor receptor (FGFR) extracellular domain consists of three Ig domains (D1-D3) of which the two membrane-proximal D2 and D3 domains and the interconnecting D2-D3 linker bear the determinants of ligand binding and specificity. In contrast, D1 and the D1-D2 linker are thought to play autoinhibitory roles in FGFR regulation. Here, we report the crystal structure of the three-Ig form of FGFR3c in complex with FGF1, an FGF that binds promiscuously to each of the seven principal FGFRs. In this structure, D1 and the D1-D2 linker are completely disordered, demonstrating that these regions are dispensable for FGF binding. Real-time binding experiments using surface plasmon resonance show that relative to two-Ig form, the three-Ig form of FGFR3c exhibits lower affinity for both FGF1 and heparin. Importantly, we demonstrate that this autoinhibition is mediated by intramolecular interactions of D1 and the D1-D2 linker with the minimal FGF and heparin-binding D2-D3 region. As in the FGF1-FGFR2c structure, but not the FGF1-FGFR1c structure, the alternatively spliced betaC'-betaE loop is ordered and interacts with FGF1 in the FGF1-FGFR3c structure. However, in contrast to the FGF1-FGFR2c structure in which the betaC'-betaE loop interacts with the beta-trefoil core region of FGF1, in the FGF1-FGFR3c structure, this loop interacts extensively with the N-terminal region of FGF1, underscoring the importance of the FGF1 N terminus in conferring receptor-binding affinity and promiscuity. Importantly, comparison of the three FGF1-FGFR structures shows that the flexibility of the betaC'-betaE loop is a major determinant of ligand-binding specificity and promiscuity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。